7-1 Study Guide and Intervention

Multiplication Properties of Exponents

Multiply Monomials A **monomial** is a number, a variable, or the product of a number and one or more variables with nonnegative integer exponents. An expression of the form x^n is called a **power** and represents the product you obtain when x is used as a factor n times. To multiply two powers that have the same base, add the exponents.

Product of Powers

For any number a and all integers m and n, $a^m \cdot a^n = a^{m+n}$.

Example 1 Simplify $(3x^6)(5x^2)$.

$$(3x^6)(5x^2) = (3)(5)(x^6 \cdot x^2) \qquad \text{Group the coefficients}$$
 and the variables
$$= (3 \cdot 5)(x^{6+2}) \qquad \text{Product of Powers}$$

 $= 15x^8$ Simplify.

The product is $15x^8$.

Example 2 Simplify $(-4a^3b)(3a^2b^5)$.

Lesson 7-1

$$(-4a^{3}b)(3a^{2}b^{5}) = (-4)(3)(a^{3} \cdot a^{2})(b \cdot b^{5})$$

$$= -12(a^{3+2})(b^{1+5})$$

$$= -12a^{5}b^{6}$$

The product is $-12a^5b^6$.

Exercises

Simplify each expression.

1.
$$y(y^5)$$

2.
$$n^2 \cdot n^7$$

3.
$$(-7x^2)(x^4)$$

-7 x^6

4.
$$x(x^2)(x^4)$$
 x^7

5.
$$m \cdot m^5$$
 m⁶

6.
$$(-x^3)(-x^4)$$

7.
$$(2a^2)(8a)$$
16 a^3

8.
$$(rn)(rn^3)(n^2)$$

 r^2n^6

9.
$$(x^2y)(4xy^3)$$

 $4x^3y^4$

10.
$$\frac{1}{3}(2a^3b)(6b^3)$$
4a $^3b^4$

11.
$$(-4x^3)(-5x^7)$$
 20x¹⁰

12.
$$(-3j^2k^4)(2jk^6)$$

-6 j^3k^{10}

13.
$$(5a^2bc^3)\left(\frac{1}{5}abc^4\right)$$

 $a^3b^2c^7$

14.
$$(-5xy)(4x^2)(y^4)$$

-**20** x^3y^5

15.
$$(10x^3yz^2)(-2xy^5z)$$

-20x⁴y⁶z³

7-1 Study Guide and Intervention (continued)

Multiplication Properties of Exponents

Simplify Expressions An expression of the form $(x^m)^n$ is called a **power of a power** and represents the product you obtain when x^m is used as a factor n times. To find the power of a power, multiply exponents.

Power of a Power	For any number a and any integers m and p , $(a^m)^p = a^{mp}$.
Power of a Product	For any numbers a and b and any integer m , $(ab)^m = a^m b^m$.

We can combine and use these properties to simplify expressions involving monomials.

Power of a Power

Example Simplify $(-2ab^2)^3(a^2)^4$.

$$\begin{array}{ll} (-2ab^2)^3(a^2)^4=(-2ab^2)^3(a^8) & \text{Power of a Power} \\ &=(-2)^3(a^3)(b^2)^3(a^8) & \text{Power of a Product} \\ &=(-2)^3(a^3)(a^8)(b^2)^3 & \text{Group the coefficients and the variables} \\ &=(-2)^3(a^{11})(b^2)^3 & \text{Product of Powers} \end{array}$$

The product is $-8a^{11}b^6$.

Exercises

Simplify each expression.

 $= -8a^{11}b^6$

1.
$$(y^5)^2$$

2.
$$(n^7)^4$$

3.
$$(x^2)^5(x^3)$$

4.
$$-3(ab^4)^3$$
 -3 a^3b^{12}

5.
$$(-3ab^4)^3$$

-27a³b¹²

6.
$$(4x^2b)^3$$
 64 x^6b^3

7.
$$(4a^2)^2(b^3)$$

16 a^4b^3

8.
$$(4x)^2(b^3)$$

16 x^2b^3

9.
$$(x^2y^4)^5$$

 $x^{10}y^{20}$

10.
$$(2a^3b^2)(b^3)^2$$

2a³b⁸

11.
$$(-4xy)^3(-2x^2)^3$$

512 x^9v^3

12.
$$(-3j^2k^3)^2(2j^2k)^3$$

72 $j^{10}k^9$

13.
$$(25a^2b)^3 \left(\frac{1}{5}abf\right)^2$$

625 $a^8b^5f^2$

14.
$$(2xy)^2(-3x^2)(4y^4)$$

-48 x^4y^6

15.
$$(2x^3y^2z^2)^3(x^2z)^4$$

8 $x^{17}y^6z^{10}$

16.
$$(-2n^6y^5)(-6n^3y^2)(ny)^3$$

12 $n^{12}y^{10}$

17.
$$(-3a^3n^4)(-3a^3n)^4$$

-243a¹⁵n⁸

18.
$$-3(2x)^4(4x^5y)^2$$

-768 $x^{14}v^2$