$\qquad$ DATE $\qquad$
$\qquad$

## 7-1 Study Guide and Intervention

## Multiplication Properties of Exponents

Multiply Monomials A monomial is a number, a variable, or the product of a number and one or more variables with nonnegative integer exponents. An expression of the form $x^{n}$ is called a power and represents the product you obtain when $x$ is used as a factor $n$ times. To multiply two powers that have the same base, add the exponents.

> | Product of Powers | For any number $a$ and all integers $m$ and $n, a^{m} \cdot a^{n}=a^{m+n}$..$~$. |
| :--- | :--- |

## Example 1 Simplify $\left(3 x^{6}\right)\left(5 x^{2}\right)$.

$$
\begin{array}{rlrl}
\left(3 x^{6}\right)\left(5 x^{2}\right) & =(3)(5)\left(x^{6} \cdot x^{2}\right) & & \text { Group the coefficients } \\
& =(3 \cdot 5)\left(x^{6+2}\right) & & \text { and the variables } \\
& =15 x^{8} & & \text { Product of Powers } \\
\text { Simplify. }
\end{array}
$$

The product is $15 x^{8}$.

Example $2 \quad$ Simplify $\left(-4 a^{3} b\right)\left(3 a^{2} b^{5}\right)$.
$\left(-4 a^{3} b\right)\left(3 a^{2} b^{5}\right)=(-4)(3)\left(a^{3} \cdot a^{2}\right)\left(b \cdot b^{5}\right)$ $=-12\left(a^{3+2}\right)\left(b^{1+5}\right)$

$$
=-12 a^{5} b^{6}
$$

The product is $-12 a^{5} b^{6}$.

## Exercises

Simplify each expression.

1. $y\left(y^{5}\right)$
$y^{6}$
2. $n^{2} \cdot n^{7}$
$n^{9}$
3. $\left(-7 x^{2}\right)\left(x^{4}\right)$
$-7 x^{6}$
4. $x\left(x^{2}\right)\left(x^{4}\right)$
$\mathbf{x}^{7}$
5. $m \cdot m^{5}$
$m^{6}$
6. $\left(-x^{3}\right)\left(-x^{4}\right)$ $\mathbf{x}^{7}$
7. $\left(2 a^{2}\right)(8 a)$
$16 a^{3}$
8. $(r n)\left(r n^{3}\right)\left(n^{2}\right)$
$r^{2} n^{6}$
9. $\left(x^{2} y\right)\left(4 x y^{3}\right)$
$4 x^{3} y^{4}$
10. $\frac{1}{3}\left(2 a^{3} b\right)\left(6 b^{3}\right)$
$4 a^{3} b^{4}$
11. $\left(-4 x^{3}\right)\left(-5 x^{7}\right)$
$20 x^{10}$
12. $\left(-3 j^{2} k^{4}\right)\left(2 j k^{6}\right)$
$-6 j^{3} k^{10}$
13. $\left(5 a^{2} b c^{3}\right)\left(\frac{1}{5} a b c^{4}\right)$
$a^{3} b^{2} c^{7}$
14. $(-5 x y)\left(4 x^{2}\right)\left(y^{4}\right)$
$-20 x^{3} y^{5}$
15. $\left(10 x^{3} y z^{2}\right)\left(-2 x y^{5} z\right)$
$-20 x^{4} y^{6} z^{3}$
$\qquad$
$\qquad$

## 7-1 Study Guide and Intervention (continued)

## Multiplication Properties of Exponents

Simplify Expressions An expression of the form $\left(x^{m}\right)^{n}$ is called a power of a power and represents the product you obtain when $x^{m}$ is used as a factor $n$ times. To find the power of a power, multiply exponents.

| Power of a Power | For any number $a$ and any integers $m$ and $p,\left(\mathrm{a}^{m}\right)^{p}=\mathrm{a}^{m p}$. |
| :--- | :--- |
| Power of a Product | For any numbers $a$ and $b$ and any integer $m,(a b)^{m}=a^{m} b^{m}$. |

We can combine and use these properties to simplify expressions involving monomials.

Example Simplify $\left(-\mathbf{2 a b}^{2}\right)^{3}\left(\boldsymbol{a}^{2}\right)^{4}$.

$$
\begin{aligned}
\left(-2 a b^{2}\right)^{3}\left(a^{2}\right)^{4} & =\left(-2 a b^{2}\right)^{3}\left(a^{8}\right) & & \text { Power of a Power } \\
& =(-2)^{3}\left(a^{3}\right)\left(b^{2}\right)^{3}\left(a^{8}\right) & & \text { Power of a Product } \\
& =(-2)^{3}\left(a^{3}\right)\left(a^{8}\right)\left(b^{2}\right)^{3} & & \text { Group the coefficients and the variables } \\
& =(-2)^{3}\left(a^{11}\right)\left(b^{2}\right)^{3} & & \text { Product of Powers } \\
& =-8 a^{11} b^{6} & & \text { Power of a Power }
\end{aligned}
$$

The product is $-8 a^{11} b^{6}$.

## Exercises

Simplify each expression.

1. $\left(y^{5}\right)^{2}$
2. $\left(n^{7}\right)^{4}$
$n^{28}$
3. $\begin{aligned} & \left(-3 a b^{4}\right)^{3} \\ & -27 a^{3} b^{12}\end{aligned}$
4. $(4 x)^{2}\left(b^{3}\right)$
$16 x^{2} b^{3}$
5. $(-4 x y)^{3}\left(-2 x^{2}\right)^{3}$
$512 x^{9} y^{3}$
6. $\left(-3 j^{2} k^{3}\right)^{2}\left(2 j^{2} k\right)^{3}$
$72 \boldsymbol{j}^{10} \boldsymbol{k}^{9}$
7. $\left(25 a^{2} b\right)^{3}\left(\frac{1}{5} a b f\right)^{2}$
$625 a^{8} b^{5} f^{2}$
8. $\left(-2 n^{6} y^{5}\right)\left(-6 n^{3} y^{2}\right)(n y)^{3}$
$12 n^{12} y^{10}$
9. $(2 x y)^{2}\left(-3 x^{2}\right)\left(4 y^{4}\right)$
10. $\left(-3 a^{3} n^{4}\right)\left(-3 a^{3} n\right)^{4}$
$-243 a^{15} n^{8}$
$-48 x^{4} y^{6}$
11. $\left(x^{2}\right)^{5}\left(x^{3}\right)$ $x^{13}$
12. $-3\left(a b^{4}\right)^{3}$
$-3 a^{3} b^{12}$
13. $\begin{array}{r}\left.x^{2} y^{4}\right)^{5} \\ \mathbf{x}^{10} \boldsymbol{y}^{20}\end{array}$
14. $\left(2 a^{3} b^{2}\right)\left(b^{3}\right)^{2}$
$2 a^{3} b^{8}$
15. $\left(2 x^{3} y^{2} z^{2}\right)^{3}\left(x^{2} z\right)^{4}$
$8 x^{17} y^{6} z^{10}$
16. $-3(2 x)^{4}\left(4 x^{5} y\right)^{2}$
$-768 x^{14} y^{2}$
