\qquad
\qquad

7-4 Study Guide and Intervention

Scientific Notation

Scientific Notation Very large and very small numbers are often best represented using a method known as scientific notation. Numbers written in scientific notation take the form $a \times 10^{n}$, where $1 \leq a<10$ and n is an integer. Any number can be written in scientific notation.

Example 1 Express 34,020,000,000 in scientific notation.
Step 1 Move the decimal point until it is to the right of the first nonzero digit. The result is a real number a. Here, $a=3.402$.

Step 2 Note the number of places n and the direction that you moved the decimal point. The decimal point moved 10 places to the left, so $n=10$.

Step 3 Because the decimal moved to the left, write the number as $\alpha \times 10^{\text {n }}$.
$34,020,000,000=3.4020000000 \times 10^{10}$
Step 4 Remove the extra zeros. 3.402×10^{10}

Example 2 Express $4.11 \times \mathbf{1 0}^{-6} \mathrm{in}$ standard notation.
Step 1 The exponent is -6 , so $n=-6$.
Step 2 Because $n<0$, move the decimal point 6 places to the left.
$4.11 \times 10^{-6} \Rightarrow .00000411$
Step $34.11 \times 10^{-6} \Rightarrow 0.00000411$
Rewrite; insert a 0 before the decimal point.

Exercises

Express each number in scientific notation.

1. $5,100,000$
2. 80,300,000,000
3. $14,250,000$
5.1×10^{6}
4. 68,070,000,000,000
6.807×10^{13}
5. 0.0049
6. 0.000301
4.9×10^{-3}
7. 0.000000185
8. 0.002002
2.002×10^{-3}
Express each number in standard form.
9. 4.91×10^{4}
49,100
10. 2.001×10^{-6}
0.000002001
11. 9.09×10^{-5}
0.0000909
12. 3.2×10^{-5}
0.000032
13. 1.00024×10^{10}
$10,002,400,000$
14. 3.5×10^{-2}
0.035
1.425×10^{7}
15. $901,050,000,000$
9.0105×10^{11}
16. 0.0000000519
5.19×10^{-8}
17. 0.00000771
7.71×10^{-6}
18. 6.03×10^{8}

603,000,000
18. 5×10^{5} 500,000
21. 1.7087×10^{7}
$17,087,000$
\qquad
\qquad

7-4 Study Guide and Intervention (continued)

Scientific Notation

Products and Quotients in Scientific Notation You can use scientific notation to simplify multiplying and dividing very large and very small numbers.

Example 1 Evaluate $\left(9.2 \times 10^{-3}\right) \times$ $\left(4 \times 10^{8}\right)$. Express the result in both scientific notation and standard form.

$$
\begin{aligned}
(9.2 & \left.\times 10^{-3}\right)\left(4 \times 10^{8}\right) & & \text { Original expressior } \\
& =(9.2 \times 4)\left(10^{-3} \times 10^{8}\right) & & \text { Commutative and } \\
& =36.8 \times 10^{5} & & \text { Associative Proper } \\
& =\left(3.68 \times 10^{1}\right) \times 10^{5} & & 36.8=3.68 \times 10 \\
& =3.68 \times 10^{6} & & \text { Product of Powers } \\
& =3,680,000 & & \text { Standard Form }
\end{aligned}
$$

Example $2 \quad$ Evaluate $\frac{\left(2.76 \times 10^{7}\right)}{\left(6.9 \times \mathbf{1 0}^{5}\right)}$.

Express the result in both scientific notation and standard form.

$$
\begin{array}{rlrl}
\frac{\left(2.76 \times 10^{7}\right)}{\left(6.9 \times 10^{5}\right)} & =\left(\frac{2.76}{6.9}\right)\left(\frac{10^{7}}{10^{5}}\right) & & \begin{array}{l}
\text { Product rule for } \\
\text { fractions }
\end{array} \\
& =0.4 \times 10^{2} & & \begin{array}{l}
\text { Quotient of } \\
\text { Powers }
\end{array} \\
& =4.0 \times 10^{-1} \times 10^{2} & 0.4=4.0 \times 10^{-1} \\
& =4.0 \times 10^{1} & & \begin{array}{l}
\text { Product of } \\
\text { Powers }
\end{array} \\
& =40 & & \text { Standard form }
\end{array}
$$

Exercises

Evaluate each product. Express the results in both scientific notation and standard form.

1. $\left(3.4 \times 10^{3}\right)\left(5 \times 10^{4}\right)$
2. $\left(2.8 \times 10^{-4}\right)\left(1.9 \times 10^{7}\right)$
$1.7 \times 10^{8} ; 170,000,000$
$5.32 \times 10^{3} ; 5320$
3. $\left(6.7 \times 10^{-7}\right)\left(3 \times 10^{3}\right)$
4. $\left(8.1 \times 10^{5}\right)\left(2.3 \times 10^{-3}\right)$
$2.01 \times 10^{-3} ; 0.00201$
$1.863 \times 10^{3} ; 1863$

5. $\left(1.2 \times 10^{-4}\right)^{2}$

6. $\left(5.9 \times 10^{5}\right)^{2}$
$1.44 \times 10^{-8} ; 0.0000000144$
$3.481 \times 10^{11} ; 348,100,000,000$

Evaluate each quotient. Express the results in both scientific notation and standard form.
7. $\frac{\left(4.9 \times 10^{-3}\right)}{\left(2.5 \times 10^{-4}\right)}$
8. $\frac{5.8 \times 10^{4}}{5 \times 10^{-2}}$
$1.96 \times 10^{1} ; 19.6$
$1.16 \times 10^{6} ; 1,160,000$
9. $\frac{\left(1.6 \times 10^{5}\right)}{\left(4 \times 10^{-4}\right)}$
$4.0 \times 10^{8} ; 400,000,000$
11. $\frac{\left(4.2 \times 10^{-2}\right)}{\left(6 \times 10^{-7}\right)}$
$7 \times 10^{4} ; 70,000$
10. $\frac{8.6 \times 10^{6}}{1.6 \times 10^{-3}}$
$5.375 \times 10^{9} ; 5,375,000,000$
12. $\frac{8.1 \times 10^{5}}{2.7 \times 10^{4}}$
$3 \times 10^{1} ; 30$

