\qquad DATE \qquad
\qquad

7-5 Study Guide and Intervention

Exponential Functions

Graph Exponential Functions

Exponential Function \quad a function defined by an equation of the form $y=a b^{x}$, where $a \neq 0, b>0$, and $b \neq 1$
You can use values of x to find ordered pairs that satisfy an exponential function. Then you can use the ordered pairs to graph the function.

Example 1 Graph $\boldsymbol{y}=3^{x}$. Find the

 \boldsymbol{y}-intercept and state the domain and range.| x | y |
| :---: | :---: |
| -2 | $\frac{1}{9}$ |
| -1 | $\frac{1}{3}$ |
| 0 | 1 |
| 1 | 3 |
| 2 | 9 |

The y-intercept is 1 .
The domain is all real numbers, and the

Exercises

Example 2 Graph $y=\left(\frac{1}{4}\right)^{x}$. Find the y-intercept and state the domain and range.

x	y
-2	16
-1	4
0	1
1	$\frac{1}{4}$
2	$\frac{1}{16}$

The y-intercept is 1 .
The domain is all real numbers, and the range is all positive numbers.

Graph each function. Find the y-intercept and state the domain and range.

1. $y=0.3^{x}$

1; $D=\{$ all real numbers\}, $R=\{y \mid y>0\}$
2. $y=3 x+1$

2; $D=\{$ all real numbers\},
$R=\{y \mid y>1\}$
3. $y=\left(\frac{1}{3}\right)^{x}+1$

2; $D=$ \{all real numbers\}, $R=\{y \mid y>1\}$
\qquad
\qquad

7-5 Study Guide and Intervention (continued)

Exponential Functions

Identify Exponential Behavior It is sometimes useful to know if a set of data is exponential. One way to tell is to observe the shape of the graph. Another way is to observe the pattern in the set of data.

Example Determine whether the set of data shown below displays exponential behavior. Write yes or no. Explain why or why not.

\mathbf{x}	0	2	4	6	8	10
\mathbf{y}	64	32	16	8	4	2

Method 1: Look for a Pattern
The domain values increase by regular intervals of 2 , while the range values have a common factor of $\frac{1}{2}$. Since the domain values increase by regular intervals and the range values have a common factor, the data are probably exponential.

Method 2: Graph the Data

The graph shows rapidly decreasing values of y as x increases. This is characteristic of exponential behavior.

Exercises

Determine whether the set of data shown below displays exponential behavior. Write yes or no. Explain why or why not.
1.

x	0	1	2	3
y	5	10	15	20

2.

x	0	1	2	3
y	3	9	27	81

No; the domain values are at regular intervals, and the range values have a common difference 5 .
3.

x	-1	1	3	5
y	32	16	8	4

Yes; the domain values are at regular intervals, and the range values have a common factor $\frac{1}{2}$.

5. | \mathbf{x} | -5 | 0 | 5 | 10 |
| :---: | ---: | :---: | :---: | :---: |
| \mathbf{y} | 1 | 0.5 | 0.25 | 0.125 |

Yes; the domain values are at regular intervals, and the range values have a common factor 0.5.
4.

\mathbf{x}	-1	0	1	2	3
\mathbf{y}	3	3	3	3	3

No; the domain values are at regular intervals, but the range values do not change.
6.

\mathbf{x}	0	1	2	3	4
\boldsymbol{y}	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{27}$	$\frac{1}{81}$	$\frac{1}{243}$

Yes; the domain values are at regular intervals, and the range values have a common factor $\frac{1}{3}$.

