7-6 Study Guide and Intervention

Growth and Decay

Exponential Growth Population increases and growth of monetary investments are examples of exponential growth. This means that an initial amount increases at a steady rate over time.

Exponential Growth	The general equation for exponential growth is $y=a(1+r)^{t}$. - y represents the final amount. - a represents the initial amount. - r represents the rate of change expressed as a decimal. - t represents time.

Example 1 POPULATION The

 population of Johnson City in 2005 was $\mathbf{2 5 , 0 0 0}$. Since then, the population has grown at an average rate of 3.2% each year.a. Write an equation to represent the population of Johnson City since 2005.
The rate 3.2% can be written as 0.032 .

$$
\begin{aligned}
& y=a(1+r)^{t} \\
& y=25,000(1+0.032)^{t} \\
& y=25,000(1.032)^{t}
\end{aligned}
$$

b. According to the equation, what will the population of Johnson City be in 2015?

In $2015 t$ will equal $2015-2005$ or 10 .
Substitute 10 for t in the equation from part a.

$$
\begin{aligned}
y & =25,000(1.032)^{10} \quad t=10 \\
& \approx 34,256
\end{aligned}
$$

In 2015 the population of Johnson City will be about 34,256 .

Exercises

1. POPULATION The population of the United States has been increasing at an average annual rate of 0.91%. If the population was about $303,146,000$ in 2008 , predict the population in 2012.
about 314,332,051
2. POPULATION It is estimated that the population of the world is increasing at an average annual rate of 1.3%. If the 2008 population was about $6,641,000,000$, predict the 2015 population.
about 7,269,417,259

Example 2 INVESTMENT The

 Garcias have $\$ 12,000$ in a savings account. The bank pays 3.5% interest on savings accounts, compounded monthly. Find the balance in 3 years.The rate 3.5% can be written as 0.035 . The special equation for compound interest is $A=P\left(1+\frac{r}{n}\right)^{n t}$, where A represents the balance, P is the initial amount, r represents the annual rate expressed as a decimal, n represents the number of times the interest is compounded each year, and t represents the number of years the money is invested.

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =12,000\left(1+\frac{0.035}{12}\right)^{3(12)} \\
& \approx 13,326.49
\end{aligned}
$$

In three years, the balance of the account will be $\$ 13,326.49$.
2. INVESTMENT Determine the value of an investment of $\$ 2500$ if it is invested at an interest rate of 5.25% compounded monthly for 4 years. \$3082.78
4. INVESTMENT Determine the value of an investment of \$100,000 if it is invested at an interest rate of 5.2% compounded quarterly for 12 years.
\$185,888.87
\qquad

7-6 Study Guide and Intervention (continued)
 Growth and Decay

Exponential Decay Radioactive decay and depreciation are examples of exponential decay. This means that an initial amount decreases at a steady rate over a period of time.

	The general equation for exponential decay is $y=a(1-r)^{t}$. • y represents the final amount. - a represents the initial amount. - r represents the rate of decay expressed as a decimal. - t represents time.

Example DEPRECIATION The original price of a tractor was $\$ 45,000$. The

 value of the tractor decreases at a steady rate of 12% per year.a. Write an equation to represent the value of the tractor since it was purchased.

The rate 12% can be written as 0.12 .
$\begin{array}{ll}y=a(1-r)^{t} & \text { General equation for exponential decay } \\ y=45,000(1-0.12)^{t} & a=45,000 \text { and } r=0.12 \\ y=45,000(0.88)^{t} & \text { Simplify. }\end{array}$
b. What is the value of the tractor in 5 years?
$\begin{array}{ll}y=45,000(0.88)^{t} & \text { Equation for decay from part a } \\ y=45,000(0.88)^{5} & t=5 \\ y \approx 23,747.94 & \text { Use a calculator. }\end{array}$
In 5 years, the tractor will be worth about $\$ 23,747.94$.

Exercises

1. POPULATION The population of Bulgaria has been decreasing at an annual rate of 0.89%. If the population of Bulgaria was about $7,450,349$ in the year 2005, predict its population in the year 2015. about 6,813,204
2. DEPRECIATION Mr. Gossell is a machinist. He bought some new machinery for about $\$ 125,000$. He wants to calculate the value of the machinery over the next 10 years for tax purposes. If the machinery depreciates at the rate of 15% per year, what is the value of the machinery (to the nearest \$100) at the end of 10 years? about $\mathbf{\$ 2 4 , 6 0 0}$
3. ARCHAEOLOGY The half-life of a radioactive element is defined as the time that it takes for one-half a quantity of the element to decay. Radioactive carbon-14 is found in all living organisms and has a half-life of 5730 years. Consider a living organism with an original concentration of carbon-14 of 100 grams.
a. If the organism lived 5730 years ago, what is the concentration of carbon-14 today? $\mathbf{5 0} \mathbf{~ g}$
b. If the organism lived 11,460 years ago, determine the concentration of carbon- 14 today. 25 g
4. DEPRECIATION A new car costs $\$ 32,000$. It is expected to depreciate 12% each year for 4 years and then depreciate 8% each year thereafter. Find the value of the car in 6 years. about \$16,242.63
