\qquad

7-7 Study Guide and Intervention

Geometric Sequences as Exponential Functions

Recognize Geometric Sequences A geometric sequence is a sequence in which each term after the first is found by multiplying the previous term by a nonzero constant r called the common ratio. The common ratio can be found by dividing any term by its previous term.

Example 1 Determine whether the sequence is arithmetic, geometric, or neither: 21, 63, 189, 567, . .

Find the ratios of the consecutive terms. If the ratios are constant, the sequence is geometric.

Because the ratios are constant, the sequence is geometric. The common ratio is 3 .

Example 2 Find the next three

 terms in this geometric sequence: $-1215,405,-135,45, \ldots$Step 1 Find the common ratio.
$\underbrace{-1215}_{\frac{405}{-1215}} \underbrace{-135} 405=\frac{45}{-135}=\frac{-1}{3}$
The value of r is $-\frac{1}{3}$.
Step 2 Multiply each term by the common ratio to find the next three terms.

The next three terms of the sequence are $-15,5$, and $-\frac{5}{3}$.
5. $648,-216,72, \ldots$
$-24,8,-2 \frac{2}{3}$
6. $25,-5,1, \ldots$
$-\frac{1}{5}, \frac{1}{25},-\frac{1}{125}$
8. $72,36,18, \ldots$
9, $4 \frac{1}{2}, 2 \frac{1}{4}$

Exercises

Determine whether each sequence is arithmetic, geometric, or neither. Explain.

1. $1,2,4,8, \ldots$
Geometric; common ratio is 2.
2. $9,14,6,11, \ldots$
Neither; there is no common difference or ratio.
3. $\frac{2}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \ldots$
4. $-2,5,12,19, \ldots$

Geometric; common ratio is $\frac{1}{2}$.
Arithmetic; common difference is 7.

Find the next three terms in each geometric sequence.
\qquad
\qquad

7-7 Study Guide and Intervention
 (continued)

Geometric Sequences as Exponential Functions

Geometric Sequences and Functions The nth term a_{n} of a geometric sequence with first term a_{1} and common ratio r is given by the following formula, where n is any positive integer: $a_{n}=a_{1} \cdot r^{n-1}$.

Example a. Write an equation for

 the nth term of the geometric sequence $5,20,80,320, \ldots$The first term of the sequence is 320 . So, $a_{1}=320$. Now find the common ratio.

The common ratio is 4 . So, $r=4$.
$a_{n}=a_{1} \cdot r^{n-1} \quad$ Formula for nth term
$a_{n}=5 \cdot 4^{n-1} \quad a_{1}=5$ and $r=4$

b. Find the seventh term of this sequence.

Because we are looking for the seventh term, $n=7$.

$$
\begin{aligned}
a_{n} & =a_{1} \cdot r^{n-1} & & \text { Formula for } n \text {th term } \\
a_{7} & =5 \cdot 4^{7-1} & & n=7 \\
& =5 \cdot 4^{6} & & \text { Simplify. } \\
& =5 \cdot 4096 & & 4^{6}=4096 \\
& =20,480 & & \text { Multiply. }
\end{aligned}
$$

The seventh term of the sequence is 20,480 .

Exercises

1. Write an equation for the nth term of the geometric sequence $-2,10,-50, \ldots$

Find the eleventh term of this sequence. $a_{n}=-2 \cdot(-5)^{n-1} ;-19,531,250$
2. Write an equation for the nth term of the geometric sequence $512,128,32, \ldots$

Find the sixth term of this sequence.

$$
a_{n}=512 \cdot\left(\frac{1}{4}\right)^{n-1} ; \frac{1}{2}
$$

3. Write an equation for the nth term of the geometric sequence $\frac{4}{9}, 4,36, \ldots$

Find the eighth term of this sequence. $\quad a_{n}=\frac{4}{9} \cdot 9^{n-1} ; 2,125,764$
4. Write an equation for the nth term of the geometric sequence $6,-54,486, \ldots$

Find the ninth term of this sequence. $\quad a_{n}=6 \cdot(-9)^{n-1} ; 258,280,326$
5. Write an equation for the nth term of the geometric sequence $100,80,64, \ldots$.

Find the seventh term of this sequence.

$$
a_{n}=100 \cdot\left(\frac{4}{5}\right)^{n-1} ; 26 \frac{134}{625}
$$

6. Write an equation for the nth term of the geometric sequence $\frac{2}{5}, \frac{1}{10}, \frac{1}{40}, \ldots$

Find the sixth term of this sequence.

$$
a_{n}=\frac{2}{5} \cdot\left(\frac{1}{4}\right)^{n-1} ; \frac{1^{5}}{2560}
$$

7. Write an equation for the nth term of the geometric sequence $\frac{3}{8},-\frac{3}{2}, 6, \ldots$

Find the tenth term of this sequence.

$$
a_{n}=\frac{3}{8} \cdot(-4)^{n-1} ;-98,304
$$

8. Write an equation for the nth term of the geometric sequence $-3,-21,-147, \ldots$.

Find the fifth term of this sequence.

$$
a_{n}=-3 \cdot 7^{n-1} ;-7203
$$

