Study Guide and Intervention 7-7

Geometric Sequences as Exponential Functions

Recognize Geometric Sequences A geometric sequence is a sequence in which each term after the first is found by multiplying the previous term by a nonzero constant r called the **common ratio**. The common ratio can be found by dividing any term by its previous term.

Example 1 **Determine whether the** sequence is *arithmetic*, *geometric*, or neither: 21, 63, 189, 567, ...

Find the ratios of the consecutive terms. If the ratios are constant, the sequence is geometric.

21	63	189	567
\smile			
$\frac{63}{21}$	$= \frac{18}{6}$	$\frac{89}{3} = \frac{5}{1}$	$\frac{567}{189} = 3$
21	6	3]	189

Because the ratios are constant, the sequence is geometric. The common ratio is 3.

Example 2 Find the next three terms in this geometric sequence: -1215, 405, -135, 45, ...

Step 1 Find the common ratio.

$$-1215 \quad 405 \quad -135 \quad 45$$
$$\frac{405}{-1215} = \frac{-135}{405} = \frac{45}{-135} = \frac{-1}{3}$$

The value of r is $-\frac{1}{2}$.

Step 2 Multiply each term by the common ratio to find the next three terms.

$$\underbrace{45 \quad -15 \quad 5 \quad -\frac{5}{3}}_{\times \left(-\frac{1}{3}\right) \quad \times \left(-\frac{1}{3}\right) \quad \times \left(-\frac{1}{3}\right)}$$

The next three terms of the sequence are -15, 5, and $-\frac{5}{3}$.

Exercises

Determine whether each sequence is arithmetic, geometric, or neither. Explain.

1. 1, 2, 4, 8,	2. 9, 14, 6, 11,
Geometric; common ratio is 2.	Neither; there is no common difference or ratio.
3. $\frac{2}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \ldots$	4. -2, 5, 12, 19,
Geometric; common ratio is $\frac{1}{2}$.	Arithmetic; common difference is 7.

Find the next three terms in each geometric sequence.

5.
$$648, -216, 72, \ldots$$
6. $25, -5, 1, \ldots$ -24, 8, $-2\frac{2}{3}$ $-\frac{1}{5}, \frac{1}{25}, -\frac{1}{125}$ 7. $\frac{1}{16}, \frac{1}{2}, 4, \ldots$ 8. 72, 36, 18, \ldots32, 256, 20489, $4\frac{1}{2}, 2\frac{1}{4}$

Study Guide and Intervention (continued) 7-7

Geometric Sequences as Exponential Functions

Geometric Sequences and Functions The *n*th term a_n of a geometric sequence with first term a_1 and common ratio r is given by the following formula, where n is any positive integer: $a_n = a_1 \cdot r^{n-1}$.

Example a. Write an equation for the *n*th term of the geometric sequence 5, 20, 80, 320, . . .

The first term of the sequence is 320. So, $a_1 = 320$. Now find the common ratio.

The common ratio is 4. So, r = 4.

$a_n = a_1 \cdot r^{n-1}$	Formula for <i>n</i> th term
$a_n = 5 \cdot 4^{n-1}$	$a_1 = 5$ and $r = 4$

b. Find the seventh term of this sequence.

Because we are looking for the seventh term, n = 7.

$a_n = a_1 \cdot r^{n-1}$	Formula for <i>n</i> th term
$a_7 = 5 \cdot 4^{7-1}$	<i>n</i> = 7
$= 5 \cdot 4^{6}$	Simplify.
$= 5 \cdot 4096$	$4^6 = 4096$
= 20,480	Multiply.

The seventh term of the sequence is 20,480.

Exercises

- **1.** Write an equation for the *n*th term of the geometric sequence -2, 10, -50, \ldots Find the eleventh term of this sequence. $a_n = -2 \cdot (-5)^{n-1}; -19,531,250$
- **2.** Write an equation for the *n*th term of the geometric sequence 512, 128, 32, \ldots $a_n = 512 \cdot \left(\frac{1}{4}\right)^{n-1}; \frac{1}{2}$ Find the sixth term of this sequence.

3. Write an equation for the *n*th term of the geometric sequence $\frac{4}{9}$, 4, 36, Find the eighth term of this sequence. $a_n = \frac{4}{9} \cdot 9^{n-1}$; 2,125,764

4. Write an equation for the *n*th term of the geometric sequence $6, -54, 486, \ldots$ Find the ninth term of this sequence. $a_n = 6 \cdot (-9)^{n-1}$; 258,280,326

5. Write an equation for the *n*th term of the geometric sequence 100, 80, 64, \ldots $a_n = 100 \cdot \left(\frac{4}{5}\right)^{n-1}; 26\frac{134}{625}$ Find the seventh term of this sequence.

- 6. Write an equation for the *n*th term of the geometric sequence $\frac{2}{5}, \frac{1}{10}, \frac{1}{40}, \dots$ Find the sixth term of this sequence. $a_n = \frac{2}{5} \cdot \left(\frac{1}{4}\right)^{n-1}; \frac{1}{2560}$
- 7. Write an equation for the *n*th term of the geometric sequence $\frac{3}{8}, -\frac{3}{2}, 6, \ldots$ $a_n = \frac{3}{8} \cdot (-4)^{n-1}; -98,304$ Find the tenth term of this sequence.
- 8. Write an equation for the *n*th term of the geometric sequence $-3, -21, -147, \ldots$ Find the fifth term of this sequence. $a_n = -3 \cdot 7^{n-1}; -7203$

Lesson 7-7