Study Guide and Intervention 7-8

Recursive Formulas

Using Recursive Formulas A recursive formula allows you to find the *n*th term of a sequence by performing operations on one or more of the terms that precede it.

Example Find the first five terms of the sequence in which $a_1 = 5$ and $a_n = -2a_{n-1} + 14$, if $n \ge 2$.

The given first term is $a_1 = 5$. Use this term and the recursive formula to find the next four terms.

$a_2 = -2a_{2-1} + 14$	<i>n</i> = 2	$a_4 = -2a_{4-1} + 14$	<i>n</i> = 4
$= -2a_1 + 14$	Simplify.	$= -2a_3 + 14$	Simplify.
= -2(5) + 14 or 4	<i>a</i> ₁ = 5	= -2(6) + 14 or 2	<i>a</i> ₃ = 6
$a_3 = -2a_{3-1} + 14$	<i>n</i> = 3	$a_5 = -2a_{5-1} + 14$	<i>n</i> = 5
$a_3 - 2a_{3-1} + 11$	<i>n</i> = 5	$w_5 - 2w_{5-1} + 11$	11 = 5
$a_3 = -2a_3 - 1 + 11$ = $-2a_2 + 14$	Simplify.	$a_5 = -2a_{5-1} + 11$ = $-2a_4 + 14$	Simplify.

The first five terms are 5, 4, 6, 2, and 10.

Exercises

Find the first five terms of each sequence.

1. $a_1 = -4, a_n = 3a_{n-1}, n \ge 2$	2. $a_1 = 5, a_n = 2a_{n-1}, n \ge 2$
-4, -12, -36, -108, -324	5, 10, 20, 40, 80
3. $a_1 = 8, a_n = a_{n-1} - 6, n \ge 2$	4. $a_1 = -32, a_n = a_{n-1} + 13, n \ge 2$
8, 2, -4, -10, -16	-32, -19, -6, 7, 20
5. $a_1 = 6, a_n = -3a_{n-1} + 20, n \ge 2$	6. $a_1 = -9, a_n = 2a_{n-1} + 11, n \ge 2$
6, 2, 14, -22, 86	-9, -7, -3, 5, 21
7. $a_1 = 12, a_n = 2a_{n-1} - 10, n \ge 2$	8. $a_1 = -1, a_n = 4a_{n-1} + 3, n \ge 2$
12, 14, 18, 26, 42	-1, -1, -1, -1, -1
9. $a_1 = 64, a_n = 0.5a_{n-1} + 8, n \ge 2$	10. $a_1 = 8, a_n = 1.5a_{n-1}, n \ge 2$
64, 40, 28, 22, 19	8, 12, 18, 27, 40.5
11. $a_1 = 400, a_n = \frac{1}{2}a_{n-1}, n \ge 2$	12. $a_1 = \frac{1}{4}, a_n = a_{n-1} + \frac{3}{4}, n \ge 2$
400, 200, 100, 50, 25	$\frac{1}{4}$, 1, $\frac{7}{4}$, $\frac{5}{2}$, $\frac{13}{4}$

7-8 Study Guide and Intervention (continued)

Recursive Formulas

Writing Recursive Formulas Complete the following steps to write a recursive formula for an arithmetic or geometric sequence.

Step 1	Determine if the sequence is arithmetic or geometric by finding a common difference or a common ratio.	
Step 2	Write a recursive formula.Arithmetic Sequences $a_n = a_{n-1} + d$, where d is the common differenceGeometric Sequences $a_n = r \cdot a_{n-1}$, where r is the common ratio	
Step 3	State the first term and the domain for <i>n</i> .	

Example Write a recursive formula for 216, 36, 6, 1,

Step 1 First subtract each term from the term that follows it.

 $216 - 36 = 180 \qquad \qquad 36 - 6 = 30 \qquad \qquad 6 - 1 = 5$

There is no common difference. Check for a common ratio by dividing each term by the term that precedes it.

$$\frac{36}{216} = \frac{1}{6} \qquad \qquad \frac{6}{36} = \frac{1}{6} \qquad \qquad \frac{1}{6} = \frac{1}{6}$$

There is a common ratio of $\frac{1}{6}$. The sequence is geometric.

Step 2 Use the formula for a geometric sequence.

 $a_n = r \cdot a_{n-1}$ Recursive formula for geometric sequence $a_n = \frac{1}{6}a_{n-1}$ $r = \frac{1}{6}$

Step 3 The first term a_1 is 216 and $n \ge 2$.

A recursive formula for the sequence is $a_1 = 216$, $a_n = \frac{1}{6}a_{n-1}$, $n \ge 2$.

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Write a recursive formula for each sequence.

1. 22, 16, 10, 4,	2. -8, -3, 2, 7,
$a_1 = 22, a_n = a_{n-1} - 6, n \ge 2$	$a_1 = -8, a_n = a_{n-1} + 5, n \ge 2$
3. 5, 15, 45, 135,	4. 243, 81, 27, 9,
$a_1 = 5, a_n = 3a_{n-1}, n \ge 2$	$\boldsymbol{a}_1 = 243, \boldsymbol{a}_n = \frac{1}{3} \boldsymbol{a}_{n-1}, \boldsymbol{n} \ge 2$
5. −3, 14, 31, 48,	6. 8, -20, 50, -125,
$\boldsymbol{a}_1 = -\boldsymbol{3}, \boldsymbol{a}_n = \boldsymbol{a}_{n-1} + \boldsymbol{17}, n \ge \boldsymbol{2}$	$a_1 = 8, a_n = -2.5a_{n-1}, n \ge 2$