\qquad
\qquad

7-8 Study Guide and Intervention

Recursive Formulas

Using Recursive Formulas A recursive formula allows you to find the nth term of a sequence by performing operations on one or more of the terms that precede it.

Example Find the first five terms of the sequence in which $a_{1}=5$ and $a_{n}=-2 a_{n-1}+14$, if $n \geq 2$.

The given first term is $a_{1}=5$. Use this term and the recursive formula to find the next four terms.

$$
\begin{aligned}
& a_{2}=-2 a_{2-1}+14 \\
& =-2 a_{1}+14 \\
& =-2(5)+14 \text { or } 4 \\
& n=2 \\
& \text { Simplify. } \\
& a_{1}=5 \\
& \begin{aligned}
a_{4} & =-2 a_{4-1}+14 & & n=4 \\
& =-2 a_{3}+14 & & \text { Simplify. } \\
& =-2(6)+14 \text { or } 2 & & a_{3}=6
\end{aligned} \\
& a_{3}=-2 a_{3-1}+14 \\
& n=3 \\
& =-2 a_{2}+14 \quad \text { Simplify. } \\
& =-2(4)+14 \text { or } 6 \\
& a_{2}=4 \\
& a_{5}=-2 a_{5-1}+14 \quad n=5 \\
& =-2 a_{4}+14 \quad \text { Simplify. } \\
& =-2(2)+14 \text { or } 10 \quad a_{4}=2
\end{aligned}
$$

The first five terms are $5,4,6,2$, and 10 .

Exercises

Find the first five terms of each sequence.

1. $a_{1}=-4, a_{n}=3 a_{n-1}, n \geq 2$
$-4,-12,-36,-108,-324$
2. $a_{1}=8, a_{n}=a_{n-1}-6, n \geq 2$

8, 2, -4, -10, -16
5. $a_{1}=6, a_{n}=-3 a_{n-1}+20, n \geq 2$

6, 2, 14, -22, 86
7. $a_{1}=12, a_{n}=2 a_{n-1}-10, n \geq 2$

12, 14, 18, 26, 42
9. $a_{1}=64, a_{n}=0.5 a_{n-1}+8, n \geq 2$

64, 40, 28, 22, 19
11. $a_{1}=400, a_{n}=\frac{1}{2} a_{n-1}, n \geq 2$

400, 200, 100, 50, 25
2. $a_{1}=5, a_{n}=2 a_{n-1}, n \geq 2$
$5,10,20,40,80$
4. $a_{1}=-32, a_{n}=a_{n-1}+13, n \geq 2$
$-32,-19,-6,7,20$
6. $a_{1}=-9, a_{n}=2 a_{n-1}+11, n \geq 2$
$-9,-7,-3,5,21$
8. $a_{1}=-1, a_{n}=4 a_{n-1}+3, n \geq 2$
$-1,-1,-1,-1,-1$
10. $a_{1}=8, a_{n}=1.5 a_{n-1}, n \geq 2$

$$
8,12,18,27,40.5
$$

12. $a_{1}=\frac{1}{4}, a_{n}=a_{n-1}+\frac{3}{4}, n \geq 2$ $\frac{1}{4}, 1, \frac{7}{4}, \frac{5}{2}, \frac{13}{4}$
\qquad
\qquad

7-8 Study Guide and Intervention (continued)

Recursive Formulas

Writing Recursive Formulas Complete the following steps to write a recursive formula for an arithmetic or geometric sequence.

Step 1	Determine if the sequence is arithmetic or geometric by finding a common difference or a common ratio.
Step 2	Write a recursive formula. Arithmetic Sequences $\quad a_{n}=a_{n-1}+d$, where d is the common difference Geometric Sequences $\quad a_{n}=r \cdot a_{n-1}$, where r is the common ratio
Step 3	State the first term and the domain for n.

Example Write a recursive formula for $216, \mathbf{3 6}, \mathbf{6}, 1, \ldots$.

Step 1 First subtract each term from the term that follows it.
$216-36=180$
$36-6=30$
$6-1=5$

There is no common difference. Check for a common ratio by dividing each term by the term that precedes it.
$\frac{36}{216}=\frac{1}{6}$
$\frac{6}{36}=\frac{1}{6}$
$\frac{1}{6}=\frac{1}{6}$

There is a common ratio of $\frac{1}{6}$. The sequence is geometric.
Step 2 Use the formula for a geometric sequence.

$$
\begin{array}{ll}
a_{n}=r \cdot a_{n-1} & \text { Recursive formula for geometric sequence } \\
a_{n}=\frac{1}{6} a_{n-1} & r=\frac{1}{6}
\end{array}
$$

Step 3 The first term a_{1} is 216 and $n \geq 2$.
A recursive formula for the sequence is $a_{1}=216, a_{n}=\frac{1}{6} a_{n-1}, n \geq 2$.

Exercises

Write a recursive formula for each sequence.

1. $22,16,10,4, \ldots$
$a_{1}=22, a_{n}=a_{n-1}-6, n \geq 2$
2. $-8,-3,2,7, \ldots$

$$
a_{1}=-8, a_{n}=a_{n-1}+5, n \geq 2
$$

3. $5,15,45,135, \ldots$

$$
a_{1}=5, a_{n}=3 a_{n-1}, n \geq 2
$$

4. $243,81,27,9, \ldots$

$$
a_{1}=243, a_{n}=\frac{1}{3} a_{n-1}, n \geq 2
$$

5. $-3,14,31,48, \ldots$

$$
a_{1}=-3, a_{n}=a_{n-1}+17, n \geq 2
$$

6. $8,-20,50,-125, \ldots$
$a_{1}=8, a_{n}=-2.5 a_{n-1}, n \geq 2$
