Example 2

Factor $3x^2 - 3x - 18$.

Study Guide and Intervention 8-7

Solving $ax^2 + bx + c = 0$

Factor $ax^2 + bx + c$ To factor a trinomial of the form $ax^2 + bx + c$, find two integers, m and p whose product is equal to ac and whose sum is equal to b. If there are no integers that satisfy these requirements, the polynomial is called a **prime polynomial**.

Example 1

Factor $2x^2 + 15x + 18$.

In this example, a = 2, b = 15, and c = 18. You need to find two numbers that have a sum of 15 and a product of $2 \cdot 18$ or 36. Make a list of the factors of 36 and look for the pair of factors with a sum of 15.

Factors of 36	Sum of Factors
1, 36	37
2, 18	20
3, 12	15

Use the pattern $ax^2 + mx + px + c$, with a = 2, m = 3, p = 12, and c = 18. $2x^2 + 15x + 18 = 2x^2 + 3x + 12x + 18$ $= (2x^{2} + 3x) + (12x + 18)$ = x(2x + 3) + 6(2x + 3)= (x + 6)(2x + 3)Therefore, $2x^2 + 15x + 18 = (x + 6)(2x + 3)$. Note that the GCF of the terms $3x^2$, 3x,

and 18 is 3. First factor out this GCF. $3x^2 - 3x - 18 = 3(x^2 - x - 6).$

Now factor $x^2 - x - 6$. Since a = 1, find the two factors of -6 with a sum of -1.

Factors of -6	Sum of Factors
1, -6	-5
-1, 6	5
-2, 3	1
2, -3	-1

Now use the pattern (x + m)(x + p) with m = 2 and p = -3.

 $x^2 - x - 6 = (x + 2)(x - 3)$

The complete factorization is $3x^2 - 3x - 18 = 3(x + 2)(x - 3).$

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime.

$1. 2x^2 - 3x - 2 (2x + 1)(x - 2)$	2. $3m^2 - 8m - 3$ (3m + 1)(m - 3)	3. $16r^2 - 8r + 1$ (4r - 1)(4r - 1)
4. $6x^2 + 5x - 6$ (2x + 3)(3x - 2)	5. $3x^2 + 2x - 8$ (3x - 4)(x + 2)	6. $18x^2 - 27x - 5$ (3x - 5)(6x + 1)
7. $2a^2 + 5a + 3$ (2a + 3)(a + 1)	8. $18y^2 + 9y - 5$ (6y + 5)(3y - 1)	9. $-4t^2 + 19t - 21$ (4t - 7)(3 - t)
$10.8x^2 - 4x - 24 2(2x - 4)(2x + 3)$	$\begin{array}{l} \textbf{11.} \ 28p^2 + \ 60p \ - \ 25 \\ \textbf{(2p + 5)(14p - 5)} \end{array}$	12. $48x^2 + 22x - 15$ (6x + 5)(8x - 3)
13. $3y^2 - 6y - 24$ 3(y + 2)(y - 4)	14. $4x^2 + 26x - 48$ 2(x + 8)(2x - 3)	$15.\ 8m^2 - 44m + 48 4(2m - 3)(m - 4)$
16. $6x^2 - 7x + 18$ prime	$\begin{array}{r} 17.\ 2a^2 - 14a + 18 \\ \mathbf{2(a^2 - 7a + 9)} \end{array}$	18. $18 + 11y + 2y^2$ prime

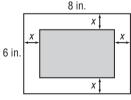
Study Guide and Intervention (continued) 8-7

Solving $ax^2 + bx + c = 0$

Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve some equations of the form $ax^2 + bx + c = 0$.

Example Solve $12x^2 + 3x = 2 - 2x$. Check your solutions.

$12x^2 + 3x = 2 - 2x$	Original equation
$12x^2 + 5x - 2 = 0$	Rewrite equation so that one side equals 0.
(3x+2)(4x-1) = 0	Factor the left side.
3x + 2 = 0 or $4x - 1 = 0$	Zero Product Property
$x = -\frac{2}{3}$ $x = \frac{1}{4}$	Solve each equation.
The solution set is $\left\{-\frac{2}{3}, \frac{1}{4}\right\}$.	
Since $12\left(-\frac{2}{3}\right)^2 + 3\left(-\frac{2}{3}\right) = 2 - 2\left(-\frac{2}{3}\right)z$	and $12\left(\frac{1}{4}\right)^2 + 3\left(\frac{1}{4}\right) = 2 - 2\left(\frac{1}{4}\right)$, the solutions check.


Exercises

Solve each equation. Check the solutions.

1. $8x^2 + 2x - 3 = 0$ **2.** $3n^2 - 2n - 5 = 0$ **3.** $2d^2 - 13d - 7 = 0$ $\left\{-1,\frac{5}{3}\right\}$ $\left\{\frac{1}{2}, -\frac{3}{4}\right\}$ $\left\{-\frac{1}{2},7\right\}$ 4. $4x^2 = x + 3$ 5. $3x^2 - 13x = 10$ 6. $6x^2 - 11x - 10 = 0$ $\left\{1,-\frac{3}{4}\right\}$ $\left\{-\frac{2}{3},5\right\}$ $\left\{-\frac{2}{3},\frac{5}{2}\right\}$ 7. $2k^2 - 40 = -11k$ 9. $-7 - 18x + 9x^2 = 0$ 8. $2p^2 = -21p - 40$ $\left\{-\frac{5}{2}, -8\right\}$ $\left\{\frac{7}{3}, -\frac{1}{3}\right\}$ $\left\{-8,\frac{5}{2}\right\}$ **10.** $12x^2 - 15 = -8x$ 12. $16y^2 - 2y - 3 = 0$ **11.** $7a^2 = -65a - 18$ $\left\{-\frac{3}{2},\frac{5}{6}\right\}$ $\left\{\frac{1}{2}, -\frac{3}{8}\right\}$ $\left\{-\frac{2}{7}, -9\right\}$ 13. $8x^2 + 5x = 3 + 7x$ 14. $4a^2 - 18a + 5 = 15$ **15.** $3b^2 - 18b = 10b - 49$ $\left\{-\frac{1}{2}, 5\right\}$ $\left\{\frac{3}{4}, -\frac{1}{2}\right\}$ $\left\{\frac{7}{2}, 7\right\}$

16. The difference of the squares of two consecutive odd integers is 24. Find the integers. -5, -7 and 5, 7

- **17. GEOMETRY** The length of a Charlotte, North Carolina, conservatory garden is 20 yards greater than its width. The area is 300 square yards. What are the dimensions? 30 yd by 10 yd 8 in.
- **18. GEOMETRY** A rectangle with an area of 24 square inches is formed by cutting strips of equal width from a rectangular piece of paper. Find the dimensions of the new rectangle if the original rectangle measures 8 inches by 6 inches. 6 in. by 4 in.

