NAME

Study Guide and Intervention 9-2

Solving Quadratic Equations by Graphing

Solve by Graphing

Quadratic Equation an equation of the form $ax^2 + bx + c = 0$, where $a \neq 0$

The solutions of a quadratic equation are called the **roots** of the equation. The roots of a quadratic equation can be found by graphing the related quadratic function $f(x) = ax^2 + bx + c$ and finding the *x*-intercepts or **zeros** of the function.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Study Guide and Intervention (continued) 9-2

Solving Quadratic Equations by Graphing

Estimate Solutions The roots of a quadratic equation may not be integers. If exact roots cannot be found, they can be estimated by finding the consecutive integers between which the roots lie.

Example Solve $x^2 + 6x + 6 = 0$ by graphing. If integral roots cannot be found, estimate the roots by stating the consecutive integers between which the roots lie.

Graph the related function $f(x) = x^2 + 6x + 6$.

x	f(x)
-5	1
-4	-2
-3	-3
-2	-2
-1	1

Notice that the value of the function changes from negative to positive between the *x*-values of -5 and -4 and between -2 and -1.

The x-intercepts of the graph are between -5 and -4 and between -2 and -1. So one root is between -5 and -4, and the other root is between -2 and -1.

Exercises

Solve each equation by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

no real roots

