$\qquad$
$\qquad$

## 9-2 Study Guide and Intervention <br> Solving Quadratic Equations by Graphing

## Solve by Graphing

Quadratic Equation $\quad$ an equation of the form $\boldsymbol{a x}^{2}+\boldsymbol{b} \mathbf{x}+\mathbf{c}=0$, where $\mathbf{a} \neq 0$
The solutions of a quadratic equation are called the roots of the equation. The roots of a quadratic equation can be found by graphing the related quadratic function $f(x)=a x^{2}+b x+c$ and finding the $x$-intercepts or zeros of the function.

## Example 1 Solve $\boldsymbol{x}^{2}+4 x+3=0$ by graphing.

Graph the related function $f(x)=x^{2}+4 x+3$. The equation of the axis of symmetry is
$x=-\frac{4}{2(1)}$ or -2 . The vertex is at $(-2,-1)$.
Graph the vertex and several other points on either side of the axis of symmetry.


To solve $x^{2}+4 x+3=0$, you need to know where $f(x)=0$. This occurs at the $x$-intercepts, -3 and -1 .
The solutions are -3 and -1 .

## Example 2 Solve $\boldsymbol{x}^{2}-6 x+9=0$ by

 graphing.Graph the related function $f(x)=x^{2}-6 x+9$. The equation of the axis of symmetry is $x=\frac{6}{2(1)}$ or 3 . The vertex is at $(3,0)$. Graph the vertex and several other points on either side of the axis of symmetry.


To solve $x^{2}-6 x+9=0$, you need to know where $f(x)=0$. The vertex of the parabola is the $x$-intercept. Thus, the only solution is 3 .

## Exercises

Solve each equation by graphing.

$-3,-4$
2. $x^{2}-x-12=0$


4, -3
3. $x^{2}-4 x+5=0$

no real roots
$\qquad$
$\qquad$

## 9-2 Study Guide and Intervention (continued)

Solving Quadratic Equations by Graphing
Estimate Solutions The roots of a quadratic equation may not be integers. If exact roots cannot be found, they can be estimated by finding the consecutive integers between which the roots lie.

Example Solve $x^{2}+6 x+6=0$ by graphing. If integral roots cannot be found, estimate the roots by stating the consecutive integers between which the roots lie.

Graph the related function $f(x)=x^{2}+6 x+6$.

| $\mathbf{x}$ | $\boldsymbol{f}(\mathbf{x})$ |
| :---: | :---: |
| -5 | 1 |
| -4 | -2 |
| -3 | -3 |
| -2 | -2 |
| -1 | 1 |



The $x$-intercepts of the graph are between -5 and -4 and between -2 and -1 .
So one root is between -5 and -4 , and the other root is between -2 and -1 .

## Exercises

Solve each equation by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

1. $x^{2}+7 x+9=0$

$-6<x<-5$,
$-2<x<-1$
2. $x^{2}-x-4=0$

$-2<x<-1$, $2<x<3$
3. $x^{2}-4 x-1=0$

$-1<x<0$,
$4<x<5$
Chapter 9
4. $4 x^{2}-12 x+3=0$

$0<x<1$,
$2<x<3$
5. $x^{2}-4 x+6=0$

no real roots
6. $x^{2}-2 x-4=0$

$-2<x<-1$,
$3<x<4$
