Study Guide and Intervention 9-4

Solving Quadratic Equations by Completing the Square

Complete the Square Perfect square trinomials can be solved quickly by taking the square root of both sides of the equation. A quadratic equation that is not in perfect square form can be made into a perfect square by a method called **completing the square**.

Completing the Square

To complete the square for any quadratic equation of the form $x^2 + bx$:

Step 1 Find one-half of *b*, the coefficient of *x*.

Step 2 Square the result in Step 1.

Add the result of Step 2 to $x^2 + bx$. Step 3

 $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$

Example Find the value of c that makes $x^2 + 2x + c$ a perfect square trinomial.

Step 1	Find $\frac{1}{2}$ of 2.	$\frac{2}{2} = 1$
Step 2	Square the result of Step 1.	1 ² = 1
Step 3	Add the result of Step 2 to $x^2 + 2x$.	$x^2 + 2x + 1$

Thus, c = 1. Notice that $x^2 + 2x + 1$ equals $(x + 1)^2$.

Exercises

Find the value of c that makes each trinomial a perfect square.

1. $x^2 + 10x + c$ 25 **2.** $x^2 + 14x + c$ **49** 3. $x^2 - 4x + c$ 4 4. $x^2 - 8x + c$ 16 **5.** $x^2 + 5x + c \frac{25}{4}$ **6.** $x^2 + 9x + c = \frac{81}{4}$ 7. $x^2 - 3x + c \frac{9}{4}$ 8. $x^2 - 15x + c \frac{225}{4}$ **9.** $x^2 + 28x + c$ **196 10.** $x^2 + 22x + c$ **121**

Study Guide and Intervention (continued) 9-4

Solving Quadratic Equations by Completing the Square

Solve by Completing the Square Since few quadratic expressions are perfect square trinomials, the method of **completing the square** can be used to solve some quadratic equations. Use the following steps to complete the square for a quadratic expression of the form $ax^2 + bx$.

Step 1	Find $\frac{b}{2}$.	
Step 2	Find $\left(\frac{b}{2}\right)^2$.	
Step 3	Add $\left(\frac{b}{2}\right)^2$ to $ax^2 + bx$.	

Example Solve $x^2 + 6x + 3 = 10$ by completing the square.

$x^2 + 6x + 3 = 10$	Original equation			
$x^2 + 6x + 3 - 3 = 10 - 3$	Subtract 3 from each side.			
$x^2 + 6x = 7$	Simplify.			
$x^2 + 6x + 9 = 7 + 9$	Since $\left(\frac{6}{2}\right)^2 = 9$, add 9 to each side.			
$(x + 3)^2 = 16$	Factor $x^2 + 6x + 9$.			
$x + 3 = \pm 4$	Take the square root of each side.			
$x = -3 \pm 4$	Simplify.			
x = -3 + 4 or $x = -3 - 4$				
= 1 = -7				
The solution set is $(7, 1)$				

The solution set is $\{-7, 1\}$.

Exercises

Solve each equation by completing the square. Round to the nearest tenth if necessary.

1. $x^2 - 4x + 3 = 0$	2. $x^2 + 10x = -9$	3. $x^2 - 8x - 9 = 0$
1, 3	-1, -9	—1, 9
4. $x^2 - 6x = 16$	5. $x^2 - 4x - 5 = 0$	6. $x^2 - 12x = 9$
-2, 8	—1, 5	-0.7, 12.7
7. $x^2 + 8x = 20$	8. $x^2 = 2x + 1$	9. $x^2 + 20x + 11 = -8$
—10, 2	-0.4, 2.4	—19, —1
10. $x^2 - 1 = 5x$	11. $x^2 = 22x + 23$	12. $x^2 - 8x = -7$
-0.2, 5.2	-1, 23	1, 7
13. $x^2 + 10x = 24$	14. $x^2 - 18x = 19$	15. $x^2 + 16x = -16$
—12, 2	—1, 19	—14.9, —1.1
16. $4x^2 = 24 + 4x$	17. $2x^2 + 4x + 2 = 8$	18. $4x^2 = 40x + 44$
-2, 3	—3 , 1	—1, 11