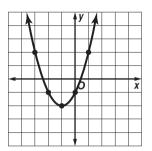
# 9-6 Study Guide and Intervention

# **Analyzing Functions with Successive Differences**


**Identify Functions** Linear functions, quadratic functions, and exponential functions can all be used to model data. The general forms of the equations are listed at the right.

| Linear Function      | y = mx + b          |
|----------------------|---------------------|
| Quadratic Function   | $y = ax^2 + bx + c$ |
| Exponential Function | $y = ab^x$          |

Lesson 9-6

You can also identify data as linear, quadratic, or exponential based on patterns of behavior of their y-values.

Example 1 Graph the set of ordered pairs  $\{(-3, 2), (-2, -1), (-1, -2), (0, -1), (1, 2)\}$ . Determine whether the ordered pairs represent a *linear* function, a *quadratic* function, or an *exponential* function.



The ordered pairs appear to represent a quadratic function.

Example 2 Look for a pattern in the table to determine which model best describes the data.

| X | -2 | -1 | 0 | 1   | 2    |
|---|----|----|---|-----|------|
| у | 4  | 2  | 1 | 0.5 | 0.25 |

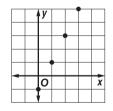
Start by comparing the first differences.

$$4 \xrightarrow{-2} 2 \xrightarrow{-1} 1 \xrightarrow{-0.5} 0.5 \xrightarrow{-0.25} 0.25$$

The first differences are not all equal. The table does not represent a linear function. Find the second differences and compare.

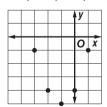
$$-2 \xrightarrow{} -1 \xrightarrow{} -1 \xrightarrow{} -0.5 \xrightarrow{} -0.25$$

The table does not represent a quadratic function. Find the ratios of the *y*-values.


$$4 \xrightarrow[\times 0.5]{} 2 \xrightarrow[\times 0.5]{} 1 \xrightarrow[\times 0.5]{} 0.5 \xrightarrow[\times 0.5]{} 0.25$$

The ratios are equal. Therefore, the table can be modeled by an exponential function.

### **Exercises**


Graph each set of ordered pairs. Determine whether the ordered pairs represent a *linear* function, a *quadratic* function, or an *exponential* function.

1. 
$$(0, -1), (1, 1), (2, 3), (3, 5)$$



linear

**2.** 
$$(-3, -1)$$
,  $(-2, -4)$ ,  $(-1, -5)$ ,  $(0, -4)$ ,  $(1, -1)$ 



exponential

quadratic

Look for a pattern in each table to determine which model best describes the data.

| 3. | х | -2 | -1 | 0 | 1 | 2 |
|----|---|----|----|---|---|---|
|    | у | 6  | 5  | 4 | 3 | 2 |

4. x -2 -1 0 1 2 y 6.25 2.5 1 0.4 0.16

linear

#### 9-6 Study Guide and Intervention (continued)

## **Analyzing Functions with Successive Differences**

Write Equations Once you find the model that best describes the data, you can write an equation for the function.

|             | Linear Function      | y = mx + b |  |
|-------------|----------------------|------------|--|
| Basic Forms | Quadratic Function   | $y = ax^2$ |  |
|             | Exponential Function | $y = ab^x$ |  |

**Example** Determine which model best describes the data. Then write an equation for the function that models the data.

| X | 0 | 1 | 2  | 3  | 4  |
|---|---|---|----|----|----|
| У | 3 | 6 | 12 | 24 | 48 |

**Step 1** Determine whether the data is modeled by a linear, quadratic, or exponential function.

First differences:

$$3 \xrightarrow{+3} 6 \xrightarrow{+6} 12 \xrightarrow{+12} 24 \xrightarrow{+24} 48$$

Second differences:

$$3 \xrightarrow{+3} 6 \xrightarrow{+6} 12 \xrightarrow{+12} 24$$

ν-value ratios:

$$3 \xrightarrow{\times 2} 6 \xrightarrow{\times 2} 12 \xrightarrow{\times 2} 24 \xrightarrow{\times 2} 48$$

The ratios of successive *y*-values are equal. Therefore, the table of values can be modeled by an exponential function.

**Step 2** Write an equation for the function that models the data. The equation has the form  $y = ab^x$ . The y-value ratio is 2, so this is the value of the base.

$$y = ab^x$$
 Equation for exponential function

$$3 = a(2)^0$$
  $x = 0, y = 3, \text{ and } b = 2$ 

$$3=a$$
 Simplify.

An equation that models the data is  $y = 3 \cdot 2^x$ . To check the results, you can verify that the other ordered pairs satisfy the function.

### **Exercises**

Look for a pattern in each table of values to determine which model best describes the data. Then write an equation for the function that models the data.

quadratic; 
$$y = 3x^2$$

linear; 
$$y = 3x + 1$$

exponential; 
$$y = 3 \cdot 4^x$$