\qquad
\qquad

9-7 Study Guide and Intervention

Special Functions

Step Functions The graph of a step function is a series of disjointed line segments. Because each part of a step function is linear, this type of function is called a piecewise-linear function.
One example of a step function is the greatest integer function, written as $f(x)=\llbracket x \rrbracket$, where $f(x)$ is the greatest integer not greater than x.

```
Example Graph f(x)=\llbracketx+3\rrbracket.
```

Make a table of values using integer and noninteger values. On the graph, dots represent included points, and circles represent points that are excluded.

x	$x+3$	$\llbracket x+3 \rrbracket$
-5	-2	-2
-3.5	-0.5	-1
-2	1	1
-0.5	2.5	2
1	4	4
2.5	5.5	5

Because the dots and circles overlap, the domain is all real numbers. The range is all integers.

Exercises

Graph each function. State the domain and range.

1-6. $D=\{$ all real numbers $\} ; R=\{$ all integers $\}$

1. $f(x)=\llbracket x+1 \rrbracket$

2. $f(x)=-\llbracket x \rrbracket$

3. $f(x)=\llbracket x-1 \rrbracket$

4. $f(x)=\llbracket x \rrbracket+4$

5. $f(x)=\llbracket x \rrbracket-3$

6. $f(x)=\llbracket 2 x \rrbracket$

\qquad
\qquad

9-7 Study Guide and Intervention (continued)

Special Functions

Absolute Value Functions Another type of piecewise-linear function is the absolute value function. Recall that the absolute value of a number is always nonnegative. So in the absolute value function, written as $f(x)=|x|$, all of the values of the range are nonnegative.
The absolute value function is called a piecewise-defined function because it can be written using two or more expressions.

Example 1 Graph $f(x)=|x+2|$.

State the domain and range.
$f(x)$ cannot be negative, so the minimum point is $f(x)=0$.

$$
\begin{aligned}
f(x) & =|x+2| & & \text { Original function } \\
0 & =x+2 & & \text { Replace } f(x) \text { with } 0 . \\
-2 & =x & & \text { Subtract } 2 \text { from eac }
\end{aligned}
$$

Make a table. Include values for $x>-2$ and $x<-2$.

x	$f(x)$
-5	3
-4	2
-3	1
-2	0
-1	1
0	2
1	3
2	4

The domain is all real numbers. The range is all real numbers greater than or equal to 0 .

Example 2 Graph

$f(x)=\left\{\begin{array}{c}x+1 \text { if } x>1 \\ 3 x \text { if } x \leq 1\end{array}\right.$. State the domain and range.
Graph the first expression. When $x>1$, $f(x)=x+1$. Since $x \neq 1$, place an open circle at (1, 2).
Next, graph the second expression. When $x \leq 1, f(x)=3 x$. Since $x=1$, place a closed circle at (1, 3).

The domain and range are both all real numbers.

Exercises

Graph each function. State the domain and range.

1. $f(x)=|x-1|$
2. $f(x)=|-x+2|$
3. $f(x)=\left\{\begin{array}{cc}-x+4 & \text { if } x \leq 1 \\ x-2 & \text { if } x>1\end{array}\right.$

$D=\{$ all real numbers $\} ;$
$R=\{y \mid y>0\}$
$\mathrm{D}=$ \{all real numbers $\} ; \mathrm{D}=$ \{all real numbers $\} ;$
$\mathrm{R}=\{y \mid y>0\} \quad \mathrm{R}=\{y \mid y>-1\}$
