NAME _

Study Guide and Intervention 9-7

Special Functions

Step Functions The graph of a **step function** is a series of disjointed line segments. Because each part of a step function is linear, this type of function is called a piecewise-linear function.

One example of a step function is the greatest integer function, written as f(x) = [x], where f(x) is the greatest integer not greater than x.

Example Graph
$$f(x) = [x + 3]$$
.

Make a table of values using integer and noninteger values. On the graph, dots represent included points, and circles represent points that are excluded.

x	<i>x</i> + 3	[[<i>x</i> + 3]]			
-5	-2	-2			
-3.5	-0.5	—1			
-2	1	1			
-0.5	2.5	2			
1	4	4			
2.5	5.5	5			

Because the dots and circles overlap, the domain is all real numbers. The range is all integers.

Exercises

Graph each function. State the domain and range.

 $1-6. D = \{all real numbers\}; R = \{all integers\}$

1. f(x) = [x + 1]

4. f(x) = [x] + 40 X

5. f(x) = [x] - 3f(x) 0

3. f(x) = [x - 1]f(x)0 x

Example 2

Study Guide and Intervention (continued) 9-7

Special Functions

Absolute Value Functions Another type of piecewise-linear function is the absolute value function. Recall that the absolute value of a number is always nonnegative. So in the absolute value function, written as f(x) = |x|, all of the values of the range are nonnegative.

The absolute value function is called a **piecewise-defined function** because it can be written using two or more expressions.

Example 1 Graph f(x) = |x + 2|. State the domain and range.

f(x) cannot be negative, so the minimum point is f(x) = 0.

f(x) = x + 2	Original function
0 = x + 2	Replace $f(x)$ with 0.
-2 = x	Subtract 2 from each side

Make a table. Include values for x > -2 and x < -2.

X	f(x)			
-5	3			
-4	2			
-3	1			
-2	0			
-1	1			
0	2			
1	3			
2	4			

				4) f ()	()	1	
X					\checkmark			
	\sim							
		\mathbb{N}	\mathbb{Z}					
				0				x
				,	,			
-								

The domain is all real numbers. The range is all real numbers greater than or equal to 0.

Exercises

Graph each function. State the domain and range.

2. f(x) = |-x + 2|0 y = |-x + 2| $R = \{y \mid y > 0\}$

 $f(x) = \begin{cases} x + 1 \text{ if } x > 1 \\ 3x \text{ if } x \le 1 \end{cases}$. State the domain and range. Graph the first expression. When x > 1, f(x) = x + 1. Since $x \neq 1$, place an open circle at (1, 2).

Graph

Next, graph the second expression. When $x \leq 1, f(x) = 3x$. Since x = 1, place a closed circle at (1, 3).

The domain and range are both all real numbers.

